
MATHEMATICS OF COMPUTATION
VOLUME 63, NUMBER 208
OCTOBER 1994, PAGES 785-798

FACTORING WITH TWO LARGE PRIMES

A. K. LENSTRA AND M. S. MANASSE

ABSTRACT. We describe a modification to the well-known large prime variant
of the multiple polynomial quadratic sieve factoring algorithm. In practice this
leads to a speed-up factor of 2 to 2.5. We discuss several implementation-related
aspects, and we include some examples. Our new variation is also of practical
importance for the number field sieve factoring algorithm.

1. FACTORING WITH TWO LARGE PRIMES

Let n > 1 be an odd integer which is not a prime power. For each random
integer x satisfying

(1.1) x2= 1 modn

there is a probability of at least 1/2 that gcd(n, x - 1) is a nontrivial factor of
n . To factor n, it therefore suffices to construct several such x 's in a more or
less random manner.

In many factoring algorithms, solutions to (1.1) are sought by collecting in-
tegers v such that

(1.2) v2 fJpeP(v) mod n,
pEP

where the factor base P is some finite set of integers that are coprime to n,
and ep(v) E Z for p E P. A pair (v, e(v)) satisfying (1.2), with e(v) =
(ep(V))pEp E Z#P, is called a relation, and will be denoted by v for short. If
V is a set of relations with #V > #P, then there exist at least 2#v-#P distinct
subsets W of V with EEw e(v) = (2wp)pEp and wp E Z; these subsets
can be found using Gaussian elimination modulo 2. Each such W leads to an
X -(HVEwV) * (Ippp-wP)modfn satisfying (1.1).

The factoring algorithm determines how P is chosen and how relations are
collected. In this paper we will restrict our attention to the multiple polyno-
mial variation of the quadratic sieve algorithm, but our method also applies to
other factoring algorithms, like the continued fraction method and the number
field sieve which for our purposes fit the same capsule description of factoring
algorithms given in the previous paragraph [6, 8].

Received by the editor August 3, 1992 and, in revised form, March 23, 1993.
1991 Mathematics Subject Classification. Primary 1 IY05.
Key words and phrases. Factoring algorithm.
A preliminary version of this paper appeared in [1 1].

? 1994 American Mathematical Society
0025-5718/94 $1.00 + $.25 per page

785

786 A. K. LENSTRA AND M. S. MANASSE

In the quadratic sieve algorithm, P consists of -1 and the primes < B with
Legendre symbol (p) = 1, for some bound B that behaves asymptotically as
L,[l/2, 1/2] for n- oo, where

(1.3) Lz[v M y] = exp((y + o(l))(log z)vJ(log log z) l-v8),

for real numbers v and y, and z -- oc. Relations are found in a particularly
efficient way, using a sieve [6, 15]. During the sieving step reports are produced,
which correspond to v 's for which (1.2) is probably satisfied; for each reported
v, the least absolute residue modulo n of its square is inspected by means of
trial division with the elements of P. On loose heuristic grounds it is expected
that it takes time L,[I/2, 1] to collect more than #P = Ln[1/2, 1/2] relations.

The large prime variation. With some small modifications and a minor loss of
efficiency, the sieve can also report near misses: integers u for which the least
absolute residue modulo n of their square can be factored using the elements
of P, except for one prime factor q(u) with B < q(u) < B2:

(1.4) u2 q(u) f Jpep(u) mod n.
pEP

Triples (u, q(u), e(u)) satisfying (1.4), with e(u) = (ep(u))PEp E Z#P, will be
called partial relations, as opposed to pairs (v, e(v)) satisfying (1.2) which will
be called full relations from here on. A partial relation (u, q(u), e(u)) will be
denoted by u, and the prime q(u) in u is called the large prime. The number
of partial relations reported by the sieve is much larger than the number of full
relations.

A set of partial relations might contain two relations u and ui for which
q(u) = q(i) . With v - (u/u) mod n and e(v) = (ep(u) - ep(ii))PEp, it follows
that (v, e(v)) is a full relation, unless v is not well defined-in which case
gcd(n, iu) is a proper divisor of n. This alternative way of producing full
relations can be combined with the direct way of finding them; it is known as
the large prime variation. Note that if k > 3 partial relations have a large prime
in common, we get at most k - 1 useful combinations; the other (k) - k + 1
combinations are linearly dependent on these. Finding the matches can for
instance be done by sorting the partial relations with respect to their large prime,
or using a hash function.

The expected asymptotic time to collect a total of more than #P full relations
with the large prime variation of the quadratic sieve is still Ln [1/2, 1] (cf. [15]
and ?3). In practice, however, it leads to savings of 50 to 60 percent, where
one usually imposes a much lower upper bound on q(u) than B2 to keep the
amount of data manageable. Notice that possibly composite q(u) > B2 can
be collected and combined as well (cf. [17]). This would probably lead to a
minor gain in efficiency, and be much less effective than the double large prime
variation.

The double large prime variation. An obvious extension of the large prime
variation is to allow two instead of only one large prime in a partial relation.
This leads to relations of the form

(1.5) u2 -ql1(u) - q2(u) . rj pep(u) mod n,
pEP

FACTORING WITH TWO LARGE PRIMES 787

where the qi(u) are primes with B < qi(u) < q2(u) < B2; the qi(u) will be
called the large primes. We may exclude the possibility that ql(u) = q2(u),
because such a relation would immediately give rise to a full relation, unless
gcd(n, q1 (u)) :$ 1 . Because quadruples (u, q1 (u), q2(u), e(u)) can be regarded
as near misses for partial relations, they will be called partial-partial relations,
or pp 's for short. The sieve can again be adapted to report the pp's as well, but
this adaptation requires substantially more work than the large prime variation
(cf. ?3).

Like the partial relations, the pp's can be combined into full relations. Let
Q be the set of large primes occurring in some set of partial and partial-partial
relations, where partial relations (u, q(u), e(u)) are regarded as pp's of the
form (u, 1, q(u), e(u)), so that Q also contains the "large prime" 1. Let G be
a graph which has Q as its vertex set, and with edges defined by the partial and
partial-partial relations: for each relation with large primes q1 and q2 (where
q1 < q2, with q1 possibly equal to 1), there is an edge between the vertices
associated with q1 and q2. A cycle in G corresponds to a set of relations
where each large prime occurs an even number of times, and therefore a full
relation if n is coprime to the u's and the large primes involved in the cycle.
This alternative way of producing full relations will be referred to as the double
large prime variation. Notice that we are only interested in a fundamental set
of cycles, i.e., a set that forms a basis for the cycles in G (cf. [19]).

It is not hard to see that, given a collection of partial relations and pp's, a set
of fundamental cycles can be found using some type of Gaussian elimination
algorithm [8]. In practice it might, however, be more convenient to use the
method sketched in ?2, because it also provides a fast way to count the number
of fundamental cycles before they are actually built. This is useful, because it
seems to be hard to give a reasonable estimate for that number in another way
(cf. ?3).

Compared to the single large prime variation, the double large prime varia-
tion of the multiple polynomial quadratic sieve achieves a speed-up by approxi-
mately a factor of 2.5, for sufficiently large n, but see ?3. As mentioned above,
the double large prime method can also be applied to the number field sieve fac-
toring algorithm. There it seems to lead to a much more dramatic improvement
of the performance of the algorithm, cf. [8].

We originally developed the algorithms presented in ?2 because we needed
them to get a practical version of the number field sieve factoring algorithm.
Once this software was in place, we realized that it could trivially be employed
in the quadratic sieve algorithm, if we would allow an additional large prime
in the ordinary large prime variation. Independently, P. L. Montgomery in
1985 [17] had proposed the use of two large primes. J. M. Pollard suggested
the same idea to us after we had already begun its implementation. We cannot
even begin to count the number of people who have subsequently suggested using
three, or even more, large primes; we believe that such a variant would make the
algorithms of the next section considerably more complicated, if not useless, and
that it would most likely slow the sieving step enough to be counterproductive-
the number of false reports would be immense.

The next section explains how we count the number of fundamental cycles,
and how we build them. The final section discusses various other practical
aspects and presents some of the factorizations we have obtained.

788 A. K. LENSTRA AND M. S. MANASSE

2. COUNTING AND FINDING CYCLES

For some set of partial and partial-partial relations, let G be the graph de-
fined in the previous section. In this section we describe an algorithm to count
the number of fundamental cycles of G and an algorithm to find a set of fun-
damental cycles.

Let v, e, and c be the number of vertices, edges, and connected components
of G, respectively. It is well known that the number of fundamental cycles of
G equals e + c - v, so to solve the counting problem it suffices to find v, e,
and c. Unfortunately, our representation of G is not such that any of these
quantities is known right away. All that is given, initially, is some collection
C of putative partial and partial-partial relations. Depending on how C was
obtained, it might be known that all elements of C are indeed relations, and
that they are distinct, allowing e to be computed as #C. It might instead be
the case, as in [10], that some of the elements of C are corrupted, or that C
contains duplicates. An additional practical problem is caused by the size of
C: in our work C consists of several hundred megabytes of data, so that C
cannot be expected to fit in memory.

To deal with this problem, we first describe a preprocessing step that de-
termines a set of correct relations R, given some collection C of putative
relations. The collection C and the set R should be thought of as input and
output files, respectively, and should be sequentially accessible for reading (C)
or writing (R) . We assume that C contains one relation per line. Furthermore,
we assume that C does not contain putative full relations, but only partial and
partial-partial relations; the full relations can be treated similarly and separately.
The preprocessing step below is by no means the only way in which R can be
derived from C. It might, however, be helpful and contain useful suggestions
for one's own implementation.

Preprocessing: counting relations. Let T = (ti)s I] be a hash table of size
S, where the ti are randomly accessible and store four bytes of information.
The size S should be chosen in such a way that 4 * S bytes of memory, i.e.,
the memory needed to store T, can be allocated, and such that the hash table
can accommodate #R four-byte hash values. We used S = 223, which allows
several million relations in R-sufficient for double large prime multiple poly-
nomial quadratic sieve factorizations of numbers up to at least 125 digits. For
efficient operation, S should be at least 2 * #R.

First of all, set e to zero, and initialize all ti to -1. For each line of
C do the following. If the line cannot be recognized as a relation of the
form (u, qi(u), q2(u), e(u)), or if this quadruple does not satisfy (1.5), then
proceed to the next line. Let r be some concise, uniform representation of
(u, qi(u), q2(U), e(u)) satisfying (1.5); thus, r could for instance consist of
the hexadecimal representations of the large primes and u, in some fixed or-
dering, followed by the pairs (ep (u), p) for the nonzero ep (u) 's and increasing
p . Notice that r will in general not fit in four bytes, so that r itself cannot be
stored in one of the ti. Therefore, we first compute an eight-byte fingerprint
f(r) of r. This can for instance be done by regarding r as a polynomial over
Z/2Z and by defining f(r) as r modulo some fixed irreducible polynomial of
degree 64 over Z/2Z, a computation that can be carried out efficiently with
some auxiliary tables.

FACTORING WITH TWO LARGE PRIMES 789

Let h be a hash function that maps a bit string to an integer in {O, 1,
S - 1}. Compute the minimal j > h(f(r)) such that either tj = -1 or tj
equals the first four bytes of f(r) (or use another more intelligent collision
resolution algorithm). Here we take the indices of the hash table modulo S,
i.e., t} = tj modS . If tj = -1, then replace tj by the first four bytes of f(r),
replace e by e + 1 and R by R U r, and proceed to the next line of C. If,
on the other hand, tj is equal to the first four bytes of f (r), then reject r as
a duplicate, and proceed to the next line of C. Notice that r gets unjustly
rejected if R already contains some other relation T :$ r for which the first
four bytes of f(r) and f(r) are the same, and for which the corresponding
hash values, after collision resolution, turn out to be the same. The probability
that this happens is sufficiently low to be acceptable for our purposes. This
completes the description of the preprocessing step.

After all lines of C have been processed, R consists of correct partial and
partial-partial relations, without duplicates, and e is the number of edges of the
graph G associated with R. If the hash data ti are kept, the preprocessing step
can also be used to incorporate the data from some newly received collection
of putative relations into an already existing set R.

Counting fundamental cycles. To count the number of fundamental cycles, it
remains to determine v and c, the number of vertices and components of G,
respectively. For this we employed the well-known Union-Find algorithm [12],
which, in the present context, can be described as follows. Let T' = (di, ai)s'1
be a hash table of size S', where each entry of the table contains eight bytes:
four bytes for the data field di and four bytes for the ancestor field ai. The
size S' should be chosen in such a way that 8 * S' bytes can be allocated, and
such that T' is large enough to accommodate the large primes in R. The hash
table T' is going to contain a representation of G that allows us to keep track
of the number of components c.

Initially, set v and c to zero, and all di to -1. For each relation in R
do the following. Let q, and q2 be the large primes in the relation, where q1
might equal 1. First, insert the vertices q, and q2 into the graph: to insert q,
compute the minimal j > h'(q) E {O, 1, ... , S' - 1} for some hash function
h', such that dj = -1 or dj = q (with indices modulo S'), and if dj = -1
replace dj by q, aj by j, v by v + 1, and c by c+ 1 . As a result, we get
il, 12 E {O, 1, ., S' - 1} such that dji = qi for i = 1, 2. Next, find the
roots of the components to which q, and q2 belong: to find the root for q with
dj = q, set r equal to j, replace r by ar as long as ar :$ r, and at the end
replace all ai visited underway by the resulting r. As a result, we have that ri
is the root of the component to which qi belongs, for i = 1, 2. Finally, insert
the edge between q, and q2 in the graph: if r, :$ r2, replace c by c - 1; if
dr, < dr2, replace ar2 by r, , and if dr2 < dr, , replace ar, by r2 (smaller primes
occur more often than larger ones, so this usually joins the smaller component
to the larger). If dri = dr,2, then q, and q2 are in the same component, and a
cycle has been found. Notice that throughout this algorithm e + c - v equals
the number of fundamental cycles found after e relations from R have been
processed. This completes the description of the counting algorithm.

After all relations in R have been processed, v is the number of vertices, and
c the number of components of G. The number of fundamental cycles can then

790 A. K. LENSTRA AND M. S. MANASSE

be computed as e + c - v, finishing the description of the counting algorithm.
The number of operations needed by the algorithm is only slightly more than
linear in e; see [12] for details. This makes it relatively easy to monitor the
progress of the relation-collection step, in particular if the hash data (di, ai)
are kept, so that the count can be updated for newly found relations.

Building a set of fundamental cycles. As soon as the number of fundamental
cycles plus the number of ordinary, not combined, full relations is large enough,
a set of fundamental cycles has to be constructed in terms of the partial and
partial-partial relations involved in the cycles. This can be achieved using a
breadth-first traversal of the same graph, where the as-field is used to point to
the immediate predecessor instead of to a common root. Furthermore, each
entry of the hash table should contain an additional four-byte field that con-
tains information to retrieve the corresponding relation from R, and a field
indicating the depth of the vertex; a single bit indicating the parity of the depth
will suffice.

The counting algorithm already computed the connected components of the
graph; the roots of these components will serve as the roots of our traversal.
We place these roots in the hash table, at depth zero. We now repeatedly scan
the list of unused edges. On each pass, some edges will be added to the graph,
some will be set aside for future consideration, and some will generate cycles.
As we consider an edge, we see if either of its vertices is already in the graph
at the previous depth (by checking to see first if it is in the graph, and second
if the parity differs from the current parity). If neither vertex is in the graph
at the previous depth, we defer this edge. If one vertex of the new edge is in
the graph at the previous depth, but the other vertex is neither present at the
current nor the previous depth, add that edge; the ai-field of the newly added
vertex should point to the vertex that was already present, and the parity bit
should be set to the current parity.

In the final case where at least one vertex of the new edge is in the graph at the
previous depth, and the other vertex is present on the current or the previous
depth, we have found a cycle. This cycle can be enumerated by following parent
pointers from each vertex until they coincide. In our implementation, we do
this by reversing the ai-pointers from one of the vertices up to the root, and
then following the path from the other vertex back to the first. We then reverse
the pointers again. In this way, we avoid any storage overhead, and we traverse
the vertices in an order where it is easy to see where the squared large primes
come from. Furthermore, the additional field is used to retrieve the relations
involved in the cycle.

Notice that the way we use the bit indicating the depth makes this traversal
of the graph into a breadth-first search. Without this mechanism, we would
generate cycles somewhat longer than we get now. We found it helpful first to
trim the set R down to its subset of relations that occur in a cycle, before we
actually build the cycles. This can again be achieved using similar methods.

Various other algorithms are known that find a set of fundamental cycles
for a given graph. In [14], for instance, an algorithm is given that runs in
time O(v(e - v + 1)), where v is the number of vertices and e the number
of edges of G. The algorithm from [3] runs in time O(ve3) and has the
advantage that it finds a fundamental set of cycles with the least possible number

FACTORING WITH TWO LARGE PRIMES 791

of edges. Although this last property is useful for our purposes, because the
corresponding matrix of exponent vectors is probably of relatively low weight,
both these algorithms are less practical than the one presented above.

Essentially the same algorithms can be applied if q1 and q2 belong to distinct
sets, as is the case in the number field sieve factoring algorithm. In that case,
the hash table T could, for instance, be replaced by two smaller hash tables,
and G would consist of the union of a bipartite graph and a vertex associated
with 1.

3. EXAMPLES

In this section we discuss the following issues: predicting the yield of the
single and double large prime variation, adapting the sieve to report partial-
partial relations, the crossover point between the single and the double large
prime variation, and choosing #P, the factor base size. We conclude with a
few examples.

Predicting the yield. The following lemma is a generalization of [15, Lemma
6.1].

Lemma (3.1). Let Y be some finite set of cardinality y, let P1, P2, ... , Px be
x disjoint finite sets, and let S denote the set offunctions f: Y -+ U=I1 Pi. If
f ES, let M(f) = y - ExI %X(f), where xi(f) = 0 if f(Y) n Pi = 0 and 1
otherwise. Then with the uniform distribution on S, the expected value E(M)
of M is

x

y -x+E(l -Pi)Y
i=1

and the variance is

x x x x 2

E(I - pi)y + 2 E (I - Pi - pjy) - 1 pi)y
i=1 i=l]=i+l

where pi = #Pi/ Ex #Pj.

Proof. The proof follows the lines of the proof of [1 5, Lemma 6. 1]. We compute
the expectation and variance of X, where X(f) = x-Zx I xi(f) = x-y+M(f)
for f E S. Note that E(M) = y - x + E(X) and that X and M have the
same variance.

Let Ii(f) = 1 - xi(f); then E(7i) = (1 - pi)Y . Since X = Ex Xi, we find
that

x x

E(X) = ZE(7i) = Z(1- pi)Y.
i=l i=1

The variance E(X2) - E(X)2 follows from E(72) = E(71), E(7iXj) =

(1 - pi - pj)Y for i 5$ j, and
x x

E(X2) -E Z E(XX).
i=l j=1

This finishes the proof of (3.1). o

792 A. K. LENSTRA AND M. S. MANASSE

Lemma (3.1) can be used to predict the number of matches in the ordinary
large prime variation. Let R be a set of partial relations, and let Q = {q: q
prime, B < q < U, () = 1}, where U < B2 is the upper bound that was im-
posed on the large primes. We assume that for each u E R we have probability

Pq = l/q

EqEQ l/q

that q = q(u), for q E Q; note that if Pq is a set of cardinality HtEQ, tq t,
then Pq = #Pq/ ZqEQ #Pq . It follows from the lemma that the expected number
of matches equals

(3.2) #R - #Q + Z (1 - pq)#R.
qEQ

This expression can be approximated in various ways. For instance, since #R
is relatively small compared to #Q, it follows from a rough approximation of
(3.2) that the number of matches can initially be expected to behave as c* (#R)2
where c = (qEQ qP)/2.

Our practical observations have shown that the number of matches indeed
grows quadratically with #R, and that the yield of the large prime variation
varies considerably, which agrees with the fact that the variance is rather large.
We found, however, that the prediction given by (3.2) is consistently too high.
This can be explained by the following argument, which was kindly suggested
to us by a referee. In our model we assume that a particular large prime q
occurs with probability inversely proportional to q, since l /q of all numbers
are multiples of q . This assumption neglects the fact that, after the large prime
q is removed from the number, the resulting cofactor is smooth. Since smaller
numbers are more likely to be smooth than larger numbers, this may make
the occurrence of larger large primes more likely. This suggests an alternative
definition for Pq, namely,

1 /q&

EqEQ ll/q

for some positive a < 1, the value of which should be tried empirically. We
found that for numbers in our range of interest a E [2/3, 3/4] resulted in a
reasonable fit.

This apparent difficulty to predict the yield in a reliable way is not a serious
issue for the large prime variation, because the matchings can easily be counted
and found, as remarked in ? 1, which makes it straightforward to monitor the
progress of the relation-collection step. See [13] for an alternative analysis of
the expected number of matches in the large prime variation.

The progress of a multiple polynomial quadratic sieve factorization, using
the large prime variation, typically behaves as illustrated in Figure 1. Both the
number of ordinary full relations and the number of partial relations behave
approximately as linear functions of the time spent, which implies that the
number of ordinary full relations behaves approximately as a linear function of
the number of partial relations, as shown in the figure. The number of matching
pairs among the partial relations and the total number of full relations, however,
follow the convex curves. These data were derived from the factorization of a

FACTORING WITH TWO LARGE PRIMES 793

50000

40000

total

combined o- 30000

partial) '

_' - / .20000

/ . ordinary
/ . - , ' ~~~~~~~~fulls

I -10000

0 100000 200000 300000
partial relations ---e

FIGURE 1

1 00-digit factor of 1 1 104 + 1 for which #P was set to approximately 50,000 and
108 was used as upper bound for the large primes in the partial relations. With
the set-up as described in [10] it took us slightly more than 24 days to collect
300,000 partial relations, at which point we had 20,500 ordinary full relations
and 29,500 matching pairs of partial relations (cf. [10]).

We have not attempted to carry out a theoretical analysis of the estimated
yield of the double large prime variation. From our experience we know, how-
ever, that such an analysis cannot be expected to have much practical value:
various times we have factored numbers of approximately the same size, with
identical parameter settings, for which the same number of fundamental cycles
required entirely different numbers of partial and partial-partial relations. Fur-
thermore, the standard deviation of the yield is already quite large if only a
single large prime is used; apparently the situation is even worse for the double
large prime variation. For all numbers we factored, using the double large prime
variation, however, we found a behavior similar to the second figure, though
the combination curves might lie considerably higher or lower. Thus, once the
counting algorithm has been used a few times to find the initial part of the com-
bination curves for a particular number, its completion time can be predicted
fairly accurately. As a rule of thumb: as soon as the number of fundamental
cycles equals the number of ordinary full relations, the relation-collection step
is half completed.

The data in Figure 2 were derived from the factorization of a 107-digit factor
of 2401 - 2201 + 1 for which #P was set to 65,500 and 108 was again used as
upper bound for. the large primes in the partial and partial-partial relations. It
took us approximately 50 days to collect 165,000 partial and 760,000 partial-
partial relations, at which point we had approximately 11,000 ordinary full

794 A. K. LENSTRA AND M. S. MANASSE

65500

60000

total /

_ / _ 40000

/ cycles
//

_ / / _ 20000
/ w ordinary

fulls

combined

_ - ~ |-I- I partials
0 200000 400000 600000 800000 1000000

partial and partial-partial relations --- e-

FIGURE 2

relations and 54,500 fundamental cycles. As shown in the figure, the partial
relations among themselves gave rise to only 9,000 useful combinations. It
might be interesting to note that the partial-partial relations among themselves
gave rise to only two cycles.

Crossover between single and double large prime variation. As far as we are
aware, it is always better to use the single large prime variation than it is not
to use large primes at all. This follows from the way full relations are found
during the sieving step: if for a candidate v the least absolute residue of v2
modulo n fails to factor completely after trial division with the primes < B,
but the unfactored part m is < B2, then a partial relation has been found at
no extra cost. Usually a small extra cost will be involved in practice, because
the report bound during the sieving step will be set to a slightly lower value to
catch more partial relations.

The situation is more complicated in the double large prime variation of
the quadratic sieve. If the unfactored part m is > B2 and < B3, this either
implies a partial-partial relation or a false report: a pp if m happens to be
composite, and a false report otherwise. In the case that m is composite and
factors as q1 * q2 with B < q1 < q2 < B2, it still remains to determine the qi.
Depending on the size of B, this can be done using Pollard's rho method (as
we did), Shanks's "squfof', or the elliptic curve method [6]. Because it may be
expected that there are far more pp's than partial relations, these factorizations
and the compositeness tests to detect the false reports cause a noticeably slower
performance of the relation-collection step. As a consequence, the double large
prime variation of the quadratic sieve tends to get less efficient than the single
large prime variation for relatively small n. Where the crossover point lies
depends on many fine points, of which we mention a few.

FACTORING WITH TWO LARGE PRIMES 795

For instance, it is advisable to impose a much lower upper bound than B2 for
q2 and to use a relatively high report bound. We found that it also helps to use a
much lower upper bound for q, than for q2: it makes relation-collection faster,
and it cuts down considerably on the number of pp's without affecting the yield
in the combination step by much because pp's with both large primes close to
the same large upper bound have a relatively small probability of being useful.
Good values for the various parameters in this process are best determined
empirically. We found that for our implementation the double large prime
variation was already more efficient than the single large prime variation for n
having approximately 75 digits. For n having more than 90 digits we achieved
a speed-up over the single large prime variation by a factor of approximately
2.5.

As noted by a referee, the speed-up factor is also a function of the size of the
factor base that is used. The large prime variations serve to extend the factor
base to primes which occur rarely in factorizations. It is more efficient to dis-
cover them by removing all the small primes first and examining the quotient,
than to look for them in a more systematic way using a sieve. Owing to the re-
stricted form of large-prime relations, we can efficiently determine when enough
relations are available, and how to eliminate the large primes. Consequently,
it can be argued that a relatively small factor base results in a larger speed-up
factor. Notice also that, according to (3.2), for a larger B more partial relations
are needed to get the same expected number of matches. Because we tend to
favor small factor base sizes (see below), the speed-up factor of approximately
2.5 that we found may represent the high end of the spectrum.

For the large prime variation of the number field sieve, the problems with
compositeness testing, etc. do not occur. There the sieve consists of two separate
sieves, and the single large prime variation is applied to each of the two numbers
to be trial-divided. Consequently, we never experienced any loss of efficiency
while using the large prime variation of the number field sieve. If double large
primes are allowed in either of the two numbers that are trial-divided, then the
problems mentioned above return. For small numbers the first author found this
last variation of the number field sieve quite slow and not competitive with the
"normal" version; it might be the case that this variant becomes more practical
for larger n .

Choosing the factor base size. For all variations of the quadratic sieve algo-
rithm the bound B behaves asymptotically as Ln[1/2, 1/2], with Ln as in
(1.3). Notice that, because of the o(l) in (1.3), the same asymptotic behav-
ior Ln[1/2, 1/2] follows for the factor base size #P B/(2lnB); it should
be clear that the optimal value for #P usually does not follow by evaluating
Ln[1/2, 1/2] with o(l) simply set to zero. A reasonable indication of the
growth rate of #P, within a limited range of n 's, can however be obtained by
considering the quotient Lh[1/2, 1/2]/Ln[I/2, 1/2], where both o(I) 's are set
to zero. Thus, factor base sizes can fairly reliably be chosen for h, once opti-
mal choices have been made for n 's of various different sizes. These choices
will depend on the algorithm, the actual implementation, and various parameter
settings. Entirely different considerations may also play a role: we have often
used suboptimal factor base sizes in order to keep program sizes acceptable to
our many contributors, to cut down on the sizes of the resulting data files, and

796 A. K. LENSTRA AND M. S. MANASSE

in an attempt to avoid overloading the mail-handlers at DEC SRC. For actual
examples, see below.

Factorizations. All factorizations reported here were obtained using the set-up
as described in [10]: volunteers run our sieving program on their machines and
communicate with us using electronic mail. Computing times are given in mips-
years, where one mips-year is about 3.15 a1013 instructions. Most numbers we
factored came from the list of unfactored numbers from [2] and are reported
in [20].

The largest number we factored with the single large prime variation of the
multiple polynomial quadratic sieve was a 106-digit factor of 2353 + 1. This
factorization took approximately 140 mips-years, and we used #P = 65,500.
As reported above, we used the same #P for the factorization of a 107-digit
factor of 2401 - 2201 + 1 , which was our first factorization using the double large
prime variation of the multiple polynomial quadratic sieve. This factorization
look less than 60 mips-years.

Since that time, we factored several numbers in the 110+ digit range, the
largest one a 16-digit factor of 10142 + 1 for which we used #P = 120,000.
In principle, a larger value like 160,000 would have been better, but there were
several reasons why we preferred the suboptimal smaller choice. In addition to
the reasons mentioned above, we also had to be careful about the size of the
matrix in the Gaussian elimination step; more about this later. After approxi-
mately 400 mips-years, we gathered 25,361 ordinary full relations and a total of
284,750 partial and 953,242 partial-partial relations (with 108 as upper bound
for the large primes), which gave rise to 117,420 fundamental cycles; the graph
G (cf. ?2) had e = 1,237,992, v = 1,286,057, and c = 165,485. The number
of cycles of each length is given in Table 1. There were no cycles that did not
involve partial relations, and 352,872 of the 1,237,992 relations were used to
build the set of fundamental cycles.

Finding subsets W that lead to solutions of (1.1) is equivalent to find-
ing dependencies modulo 2 among the rows of the matrix consisting of the
25,361 + 117,420 = 142,781 exponent vectors that correspond to the relations.
To find these dependencies, we first applied structured Gaussian elimination
[4,16], which reduced the sparse 142,781 x 120,000 bit-matrix to a dense bit-
matrix consisting of 44,971 rows and 44,721 columns. So, we kept only 250

TABLE 1

cycle number cycle number
length of cycles length of cycles

2 22556 11 544
3 25394 12 233
4 22536 13 129
5 18402 14 48
6 12417 15 17
7 7747 16 5
8 4175 17 5
9 2150 18 1

10 1059 19 1

FACTORING WITH TWO LARGE PRIMES 797

of the 142,781 - 120,000 > 20,000 excess full relations. We then used a mas-
sively parallel Gaussian elimination program to find the dependencies in the
dense matrix, which could easily be transformed into dependencies among the
rows of the original large sparse matrix, and to solutions of (1.1). The resulting
factorization, which is at the time of writing still the record general-purpose
factorization, is:

10142 + 1 = 101 569 . 7669. 380623 849488 714809
* 7716926 518833 508778 689508 504941
*93611 382287 513950 329431 625811 490669
* 82 519882 659061 966708 762483 486719
446639 288430 446081.

The number we factored was the product of the last three factors.
The elimination of the dense matrix was carried out on a 16K MasPar mas-

sively parallel computer and took less than half an hour. Because the entire
dense matrix had to fit in core for our program, and because the MasPar had, at
that time, only 1/4 GigaByte of memory, we could not have processed a much
larger dense matrix. Structured Gaussian elimination on our type of matrices
typically reduces the dimension by a factor between 2.5 and 3, so we expected
that our choice #P = 120,000 would lead to a dense matrix that we would be
able to process. This indeed turned out to be the case, but only after we had
generated more than 20,000 excess full relations.

Shortly after this computation, the MasPar got upgraded to a core size of
one GigaByte, which makes it possible to process dense bit matrices of up to
approximately 90,000 rows and columns in about two hours. This corresponds
to sparse matrices consisting of approximately 250,000 rows and columns. For
a description of the massively parallel Gaussian elimination see [5].

For factorizations obtained with the double large prime variation of the num-
ber field sieve, we refer to [1, 8, and 9].

ACKNOWLEDGMENTS

Suggestions by H. W. Lenstra, Jr., R. D. Silverman, S. S. Wagstaff, Jr., and
an anonymous referee are gratefully acknowledged.

BIBLIOGRAPHY

1. D. J. Bernstein and A. K. Lenstra, A general number field sieve implementation, The De-
velopment of the Number Field Sieve, Lecture Notes in Math., vol. 1554, Springer-Verlag,
Berlin and New York, 1993, pp. 103-126.

2. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factor-
izations of bn ? 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, 2nd ed., Contemp.
Math., no. 22, Amer. Math. Soc., Providence, RI, 1988.

3. J. D. Horton, A polynomial-time algorithm to find the shortest cycle basis of a graph, SIAM
J. Comput. 16 (1987), 358-366.

4. B. A. LaMacchia and A. M. Odlyzko, Solving large sparse systems overfinitefields, Advances
in Cryptology, Proc. Crypto '90, Lecture Notes in Comput. Sci., vol. 537, Springer-Verlag,
Berlin and New York, 1991, pp. 109-133.

5. A. K. Lenstra, Massively parallel computing and factoring, Proc. Latin '92, Lecture Notes
in Comput. Sci., vol. 583, Springer-Verlag, Berlin and New York, 1992, pp. 344-355.

798 A. K. LENSTRA AND M. S. MANASSE

6. A. K. Lenstra and H. W. Lenstra, Jr., Algorithms in number theory, Handbook of Theoretical
Computer Science, vol. A, Algorithms and Complexity, Elsevier, Amsterdam, 1990, Chapter
12.

7. , The development of the number field sieve, Lecture Notes in Math., vol. 1554,
Springer-Verlag, Berlin and New York, 1993.

8. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The number field
sieve, The Development of the Number Field Sieve, Lecture Notes in Math., vol. 1554,
Springer-Verlag, Berlin and New York, 1993, pp. 11-42; Extended abstract: Proc. 22nd
Annual ACM Sympos. on Theory of Computing (STOC), Baltimore, May 14-16, 1990, pp.
564-572.

9. , The factorization of the ninth Fermat number, Math. Comp. 61 (1993), 319-349.
10. A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Advances in Cryptology,

Eurocrypt '89, Lecture Notes in Comput. Sci., vol. 434, Springer-Verlag, Berlin and New
York, 1990, pp. 355-371.

11. , Factoring with two large primes, Advances in Cryptology, Eurocrypt '90, Lecture
Notes in Comput. Sci., vol. 473, Springer-Verlag, Berlin and New York, 1991, pp. 72-82.

12. K. Mehlhorn and A. Tsakalidis, Data structures, Handbook of Theoretical Computer Sci-
ence, Vol. A, Algorithms and Complexity, Elsevier, Amsterdam, 1990, Chapter 6.

13. F. Morain, A short note on analyzing the large prime variation, manuscript, 1991.
14. K. Paton, An algorithm for finding a fundamental set of cycles of a graph, Comm. ACM 12

(1969), 514-518.
15. C. Pomerance, Analysis and comparison of some integer factoring algorithms, Computational

Methods in Number Theory (H. W. Lenstra, Jr. and R. Tijdeman, eds.), Math. Centre
Tracts, no. 154/155, Mathematisch Centrum, Amsterdam, 1983, pp. 89-139.

16. C. Pomerance and J. W. Smith, Reduction of huge, sparse matrices over finite fields via
created catastrophes, Experimental Math. 1 (1992), 90-94.

17. R. D. Silverman, private communication.
18. J. van Leeuwen (ed.), Handbook of theoretical computer science, Vol. A, Algorithms and

complexity, Elsevier, Amsterdam, 1990.
19. J. van Leeuwen, Graph algorithms, Handbook of Theoretical Computer Science, Vol. A,

Algorithms and Complexity, Elsevier, Amsterdam, 1990, Chapter 10.
20. S. S. Wagstaff, Jr., Update 2.4 to [2].

BELLCORE, 445 SOUTH STREET, MORRISTOWN, NEW JERSEY 07960
E-mail address: lenstrafbellcore.com

DEC SRC, 130 LYTTON AVENUE, PALO ALTO, CALIFORNIA 94301
E-mail address: msmDsrc . dec. com

