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FACTORING WITH TWO LARGE PRIMES 

A. K. LENSTRA AND M. S. MANASSE 

ABSTRACT. We describe a modification to the well-known large prime variant 
of the multiple polynomial quadratic sieve factoring algorithm. In practice this 
leads to a speed-up factor of 2 to 2.5. We discuss several implementation-related 
aspects, and we include some examples. Our new variation is also of practical 
importance for the number field sieve factoring algorithm. 

1. FACTORING WITH TWO LARGE PRIMES 

Let n > 1 be an odd integer which is not a prime power. For each random 
integer x satisfying 

(1.1) x2= 1 modn 

there is a probability of at least 1/2 that gcd(n, x - 1) is a nontrivial factor of 
n . To factor n, it therefore suffices to construct several such x 's in a more or 
less random manner. 

In many factoring algorithms, solutions to (1.1) are sought by collecting in- 
tegers v such that 

(1.2) v2 fJpeP(v) mod n, 
pEP 

where the factor base P is some finite set of integers that are coprime to n, 
and ep(v) E Z for p E P. A pair (v, e(v)) satisfying (1.2), with e(v) = 
(ep(V))pEp E Z#P, is called a relation, and will be denoted by v for short. If 
V is a set of relations with #V > #P, then there exist at least 2#v-#P distinct 
subsets W of V with EEw e(v) = (2wp)pEp and wp E Z; these subsets 
can be found using Gaussian elimination modulo 2. Each such W leads to an 
X -(HVEwV) * (Ippp-wP)modfn satisfying (1.1). 

The factoring algorithm determines how P is chosen and how relations are 
collected. In this paper we will restrict our attention to the multiple polyno- 
mial variation of the quadratic sieve algorithm, but our method also applies to 
other factoring algorithms, like the continued fraction method and the number 
field sieve which for our purposes fit the same capsule description of factoring 
algorithms given in the previous paragraph [6, 8]. 
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In the quadratic sieve algorithm, P consists of -1 and the primes < B with 
Legendre symbol (p) = 1, for some bound B that behaves asymptotically as 
L,[l/2, 1/2] for n- oo, where 

( 1.3) Lz[v M y] = exp((y + o( l))(log z)vJ(log log z) l-v8), 

for real numbers v and y, and z -- oc. Relations are found in a particularly 
efficient way, using a sieve [6, 15]. During the sieving step reports are produced, 
which correspond to v 's for which ( 1.2) is probably satisfied; for each reported 
v, the least absolute residue modulo n of its square is inspected by means of 
trial division with the elements of P. On loose heuristic grounds it is expected 
that it takes time L,[I/2, 1] to collect more than #P = Ln[1/2, 1/2] relations. 

The large prime variation. With some small modifications and a minor loss of 
efficiency, the sieve can also report near misses: integers u for which the least 
absolute residue modulo n of their square can be factored using the elements 
of P, except for one prime factor q(u) with B < q(u) < B2: 

(1.4) u2 q(u) f Jpep(u) mod n. 
pEP 

Triples (u, q(u), e(u)) satisfying (1.4), with e(u) = (ep(u))PEp E Z#P, will be 
called partial relations, as opposed to pairs (v, e(v)) satisfying ( 1.2) which will 
be called full relations from here on. A partial relation (u, q(u), e(u)) will be 
denoted by u, and the prime q(u) in u is called the large prime. The number 
of partial relations reported by the sieve is much larger than the number of full 
relations. 

A set of partial relations might contain two relations u and ui for which 
q(u) = q(i) . With v - (u/u) mod n and e(v) = (ep(u) - ep(ii))PEp, it follows 
that (v, e(v)) is a full relation, unless v is not well defined-in which case 
gcd(n, iu) is a proper divisor of n. This alternative way of producing full 
relations can be combined with the direct way of finding them; it is known as 
the large prime variation. Note that if k > 3 partial relations have a large prime 
in common, we get at most k - 1 useful combinations; the other (k) - k + 1 
combinations are linearly dependent on these. Finding the matches can for 
instance be done by sorting the partial relations with respect to their large prime, 
or using a hash function. 

The expected asymptotic time to collect a total of more than #P full relations 
with the large prime variation of the quadratic sieve is still Ln [1/2, 1] (cf. [15] 
and ?3). In practice, however, it leads to savings of 50 to 60 percent, where 
one usually imposes a much lower upper bound on q(u) than B2 to keep the 
amount of data manageable. Notice that possibly composite q(u) > B2 can 
be collected and combined as well (cf. [17]). This would probably lead to a 
minor gain in efficiency, and be much less effective than the double large prime 
variation. 

The double large prime variation. An obvious extension of the large prime 
variation is to allow two instead of only one large prime in a partial relation. 
This leads to relations of the form 

(1.5) u2 -ql1(u) - q2(u) . rj pep(u) mod n, 
pEP 
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where the qi(u) are primes with B < qi(u) < q2(u) < B2; the qi(u) will be 
called the large primes. We may exclude the possibility that ql(u) = q2(u), 
because such a relation would immediately give rise to a full relation, unless 
gcd(n, q1 (u)) :$ 1 . Because quadruples (u, q1 (u), q2(u), e(u)) can be regarded 
as near misses for partial relations, they will be called partial-partial relations, 
or pp 's for short. The sieve can again be adapted to report the pp's as well, but 
this adaptation requires substantially more work than the large prime variation 
(cf. ?3). 

Like the partial relations, the pp's can be combined into full relations. Let 
Q be the set of large primes occurring in some set of partial and partial-partial 
relations, where partial relations (u, q(u), e(u)) are regarded as pp's of the 
form (u, 1, q(u), e(u)), so that Q also contains the "large prime" 1. Let G be 
a graph which has Q as its vertex set, and with edges defined by the partial and 
partial-partial relations: for each relation with large primes q1 and q2 (where 
q1 < q2, with q1 possibly equal to 1), there is an edge between the vertices 
associated with q1 and q2. A cycle in G corresponds to a set of relations 
where each large prime occurs an even number of times, and therefore a full 
relation if n is coprime to the u's and the large primes involved in the cycle. 
This alternative way of producing full relations will be referred to as the double 
large prime variation. Notice that we are only interested in a fundamental set 
of cycles, i.e., a set that forms a basis for the cycles in G (cf. [19]). 

It is not hard to see that, given a collection of partial relations and pp's, a set 
of fundamental cycles can be found using some type of Gaussian elimination 
algorithm [8]. In practice it might, however, be more convenient to use the 
method sketched in ?2, because it also provides a fast way to count the number 
of fundamental cycles before they are actually built. This is useful, because it 
seems to be hard to give a reasonable estimate for that number in another way 
(cf. ?3). 

Compared to the single large prime variation, the double large prime varia- 
tion of the multiple polynomial quadratic sieve achieves a speed-up by approxi- 
mately a factor of 2.5, for sufficiently large n, but see ?3. As mentioned above, 
the double large prime method can also be applied to the number field sieve fac- 
toring algorithm. There it seems to lead to a much more dramatic improvement 
of the performance of the algorithm, cf. [8]. 

We originally developed the algorithms presented in ?2 because we needed 
them to get a practical version of the number field sieve factoring algorithm. 
Once this software was in place, we realized that it could trivially be employed 
in the quadratic sieve algorithm, if we would allow an additional large prime 
in the ordinary large prime variation. Independently, P. L. Montgomery in 
1985 [17] had proposed the use of two large primes. J. M. Pollard suggested 
the same idea to us after we had already begun its implementation. We cannot 
even begin to count the number of people who have subsequently suggested using 
three, or even more, large primes; we believe that such a variant would make the 
algorithms of the next section considerably more complicated, if not useless, and 
that it would most likely slow the sieving step enough to be counterproductive- 
the number of false reports would be immense. 

The next section explains how we count the number of fundamental cycles, 
and how we build them. The final section discusses various other practical 
aspects and presents some of the factorizations we have obtained. 
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2. COUNTING AND FINDING CYCLES 

For some set of partial and partial-partial relations, let G be the graph de- 
fined in the previous section. In this section we describe an algorithm to count 
the number of fundamental cycles of G and an algorithm to find a set of fun- 
damental cycles. 

Let v, e, and c be the number of vertices, edges, and connected components 
of G, respectively. It is well known that the number of fundamental cycles of 
G equals e + c - v, so to solve the counting problem it suffices to find v, e, 
and c. Unfortunately, our representation of G is not such that any of these 
quantities is known right away. All that is given, initially, is some collection 
C of putative partial and partial-partial relations. Depending on how C was 
obtained, it might be known that all elements of C are indeed relations, and 
that they are distinct, allowing e to be computed as #C. It might instead be 
the case, as in [10], that some of the elements of C are corrupted, or that C 
contains duplicates. An additional practical problem is caused by the size of 
C: in our work C consists of several hundred megabytes of data, so that C 
cannot be expected to fit in memory. 

To deal with this problem, we first describe a preprocessing step that de- 
termines a set of correct relations R, given some collection C of putative 
relations. The collection C and the set R should be thought of as input and 
output files, respectively, and should be sequentially accessible for reading (C) 
or writing (R) . We assume that C contains one relation per line. Furthermore, 
we assume that C does not contain putative full relations, but only partial and 
partial-partial relations; the full relations can be treated similarly and separately. 
The preprocessing step below is by no means the only way in which R can be 
derived from C. It might, however, be helpful and contain useful suggestions 
for one's own implementation. 

Preprocessing: counting relations. Let T = (ti)s I] be a hash table of size 
S, where the ti are randomly accessible and store four bytes of information. 
The size S should be chosen in such a way that 4 * S bytes of memory, i.e., 
the memory needed to store T, can be allocated, and such that the hash table 
can accommodate #R four-byte hash values. We used S = 223, which allows 
several million relations in R-sufficient for double large prime multiple poly- 
nomial quadratic sieve factorizations of numbers up to at least 125 digits. For 
efficient operation, S should be at least 2 * #R. 

First of all, set e to zero, and initialize all ti to -1. For each line of 
C do the following. If the line cannot be recognized as a relation of the 
form (u, qi(u), q2(u), e(u)), or if this quadruple does not satisfy (1.5), then 
proceed to the next line. Let r be some concise, uniform representation of 
(u, qi(u), q2(U), e(u)) satisfying (1.5); thus, r could for instance consist of 
the hexadecimal representations of the large primes and u, in some fixed or- 
dering, followed by the pairs (ep (u), p) for the nonzero ep (u) 's and increasing 
p . Notice that r will in general not fit in four bytes, so that r itself cannot be 
stored in one of the ti. Therefore, we first compute an eight-byte fingerprint 
f(r) of r. This can for instance be done by regarding r as a polynomial over 
Z/2Z and by defining f(r) as r modulo some fixed irreducible polynomial of 
degree 64 over Z/2Z, a computation that can be carried out efficiently with 
some auxiliary tables. 
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Let h be a hash function that maps a bit string to an integer in {O, 1, .... 
S - 1}. Compute the minimal j > h(f(r)) such that either tj = -1 or tj 
equals the first four bytes of f(r) (or use another more intelligent collision 
resolution algorithm). Here we take the indices of the hash table modulo S, 
i.e., t} = tj modS . If tj = -1, then replace tj by the first four bytes of f(r), 
replace e by e + 1 and R by R U r, and proceed to the next line of C. If, 
on the other hand, tj is equal to the first four bytes of f (r), then reject r as 
a duplicate, and proceed to the next line of C. Notice that r gets unjustly 
rejected if R already contains some other relation T :$ r for which the first 
four bytes of f(r) and f(r) are the same, and for which the corresponding 
hash values, after collision resolution, turn out to be the same. The probability 
that this happens is sufficiently low to be acceptable for our purposes. This 
completes the description of the preprocessing step. 

After all lines of C have been processed, R consists of correct partial and 
partial-partial relations, without duplicates, and e is the number of edges of the 
graph G associated with R. If the hash data ti are kept, the preprocessing step 
can also be used to incorporate the data from some newly received collection 
of putative relations into an already existing set R. 

Counting fundamental cycles. To count the number of fundamental cycles, it 
remains to determine v and c, the number of vertices and components of G, 
respectively. For this we employed the well-known Union-Find algorithm [12], 
which, in the present context, can be described as follows. Let T' = (di, ai)s'1 
be a hash table of size S', where each entry of the table contains eight bytes: 
four bytes for the data field di and four bytes for the ancestor field ai. The 
size S' should be chosen in such a way that 8 * S' bytes can be allocated, and 
such that T' is large enough to accommodate the large primes in R. The hash 
table T' is going to contain a representation of G that allows us to keep track 
of the number of components c. 

Initially, set v and c to zero, and all di to -1. For each relation in R 
do the following. Let q, and q2 be the large primes in the relation, where q1 
might equal 1. First, insert the vertices q, and q2 into the graph: to insert q, 
compute the minimal j > h'(q) E {O, 1, ... , S' - 1} for some hash function 
h', such that dj = -1 or dj = q (with indices modulo S'), and if dj = -1 
replace dj by q, aj by j, v by v + 1, and c by c+ 1 . As a result, we get 
il, 12 E {O, 1, ., S' - 1} such that dji = qi for i = 1, 2. Next, find the 
roots of the components to which q, and q2 belong: to find the root for q with 
dj = q, set r equal to j, replace r by ar as long as ar :$ r, and at the end 
replace all ai visited underway by the resulting r. As a result, we have that ri 
is the root of the component to which qi belongs, for i = 1, 2. Finally, insert 
the edge between q, and q2 in the graph: if r, :$ r2, replace c by c - 1; if 
dr, < dr2, replace ar2 by r, , and if dr2 < dr, , replace ar, by r2 (smaller primes 
occur more often than larger ones, so this usually joins the smaller component 
to the larger). If dri = dr,2, then q, and q2 are in the same component, and a 
cycle has been found. Notice that throughout this algorithm e + c - v equals 
the number of fundamental cycles found after e relations from R have been 
processed. This completes the description of the counting algorithm. 

After all relations in R have been processed, v is the number of vertices, and 
c the number of components of G. The number of fundamental cycles can then 
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be computed as e + c - v, finishing the description of the counting algorithm. 
The number of operations needed by the algorithm is only slightly more than 
linear in e; see [12] for details. This makes it relatively easy to monitor the 
progress of the relation-collection step, in particular if the hash data (di, ai) 
are kept, so that the count can be updated for newly found relations. 

Building a set of fundamental cycles. As soon as the number of fundamental 
cycles plus the number of ordinary, not combined, full relations is large enough, 
a set of fundamental cycles has to be constructed in terms of the partial and 
partial-partial relations involved in the cycles. This can be achieved using a 
breadth-first traversal of the same graph, where the as-field is used to point to 
the immediate predecessor instead of to a common root. Furthermore, each 
entry of the hash table should contain an additional four-byte field that con- 
tains information to retrieve the corresponding relation from R, and a field 
indicating the depth of the vertex; a single bit indicating the parity of the depth 
will suffice. 

The counting algorithm already computed the connected components of the 
graph; the roots of these components will serve as the roots of our traversal. 
We place these roots in the hash table, at depth zero. We now repeatedly scan 
the list of unused edges. On each pass, some edges will be added to the graph, 
some will be set aside for future consideration, and some will generate cycles. 
As we consider an edge, we see if either of its vertices is already in the graph 
at the previous depth (by checking to see first if it is in the graph, and second 
if the parity differs from the current parity). If neither vertex is in the graph 
at the previous depth, we defer this edge. If one vertex of the new edge is in 
the graph at the previous depth, but the other vertex is neither present at the 
current nor the previous depth, add that edge; the ai-field of the newly added 
vertex should point to the vertex that was already present, and the parity bit 
should be set to the current parity. 

In the final case where at least one vertex of the new edge is in the graph at the 
previous depth, and the other vertex is present on the current or the previous 
depth, we have found a cycle. This cycle can be enumerated by following parent 
pointers from each vertex until they coincide. In our implementation, we do 
this by reversing the ai-pointers from one of the vertices up to the root, and 
then following the path from the other vertex back to the first. We then reverse 
the pointers again. In this way, we avoid any storage overhead, and we traverse 
the vertices in an order where it is easy to see where the squared large primes 
come from. Furthermore, the additional field is used to retrieve the relations 
involved in the cycle. 

Notice that the way we use the bit indicating the depth makes this traversal 
of the graph into a breadth-first search. Without this mechanism, we would 
generate cycles somewhat longer than we get now. We found it helpful first to 
trim the set R down to its subset of relations that occur in a cycle, before we 
actually build the cycles. This can again be achieved using similar methods. 

Various other algorithms are known that find a set of fundamental cycles 
for a given graph. In [14], for instance, an algorithm is given that runs in 
time O(v(e - v + 1)), where v is the number of vertices and e the number 
of edges of G. The algorithm from [3] runs in time O(ve3) and has the 
advantage that it finds a fundamental set of cycles with the least possible number 
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of edges. Although this last property is useful for our purposes, because the 
corresponding matrix of exponent vectors is probably of relatively low weight, 
both these algorithms are less practical than the one presented above. 

Essentially the same algorithms can be applied if q1 and q2 belong to distinct 
sets, as is the case in the number field sieve factoring algorithm. In that case, 
the hash table T could, for instance, be replaced by two smaller hash tables, 
and G would consist of the union of a bipartite graph and a vertex associated 
with 1. 

3. EXAMPLES 

In this section we discuss the following issues: predicting the yield of the 
single and double large prime variation, adapting the sieve to report partial- 
partial relations, the crossover point between the single and the double large 
prime variation, and choosing #P, the factor base size. We conclude with a 
few examples. 

Predicting the yield. The following lemma is a generalization of [15, Lemma 
6.1]. 

Lemma (3.1). Let Y be some finite set of cardinality y, let P1, P2, ... , Px be 
x disjoint finite sets, and let S denote the set offunctions f: Y -+ U=I1 Pi. If 
f ES, let M(f) = y - ExI %X(f), where xi(f) = 0 if f(Y) n Pi = 0 and 1 
otherwise. Then with the uniform distribution on S, the expected value E(M) 
of M is 

x 

y -x+E(l -Pi)Y 
i=1 

and the variance is 

x x x x 2 

E(I - pi)y + 2 E (I - Pi - pjy) - 1 pi)y 
i=1 i=l ]=i+l 

where pi = #Pi/ Ex #Pj. 

Proof. The proof follows the lines of the proof of [ 1 5, Lemma 6. 1]. We compute 
the expectation and variance of X, where X(f) = x-Zx I xi(f) = x-y+M(f) 
for f E S. Note that E(M) = y - x + E(X) and that X and M have the 
same variance. 

Let Ii(f) = 1 - xi(f); then E(7i) = (1 - pi)Y . Since X = Ex Xi, we find 
that 

x x 

E(X) = ZE(7i) = Z(1- pi)Y. 
i=l i=1 

The variance E(X2) - E(X)2 follows from E(72) = E(71), E(7iXj) = 

(1 - pi - pj)Y for i 5$ j, and 
x x 

E(X2) -E Z E(XX). 
i=l j=1 

This finishes the proof of (3.1). o 
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Lemma (3.1) can be used to predict the number of matches in the ordinary 
large prime variation. Let R be a set of partial relations, and let Q = {q: q 
prime, B < q < U, ( ) = 1}, where U < B2 is the upper bound that was im- 
posed on the large primes. We assume that for each u E R we have probability 

Pq = l/q 

EqEQ l/q 

that q = q(u), for q E Q; note that if Pq is a set of cardinality HtEQ, tq t, 
then Pq = #Pq/ ZqEQ #Pq . It follows from the lemma that the expected number 
of matches equals 

(3.2) #R - #Q + Z (1 - pq)#R. 
qEQ 

This expression can be approximated in various ways. For instance, since #R 
is relatively small compared to #Q, it follows from a rough approximation of 
(3.2) that the number of matches can initially be expected to behave as c* (#R)2 
where c = (qEQ qP)/2. 

Our practical observations have shown that the number of matches indeed 
grows quadratically with #R, and that the yield of the large prime variation 
varies considerably, which agrees with the fact that the variance is rather large. 
We found, however, that the prediction given by (3.2) is consistently too high. 
This can be explained by the following argument, which was kindly suggested 
to us by a referee. In our model we assume that a particular large prime q 
occurs with probability inversely proportional to q, since l /q of all numbers 
are multiples of q . This assumption neglects the fact that, after the large prime 
q is removed from the number, the resulting cofactor is smooth. Since smaller 
numbers are more likely to be smooth than larger numbers, this may make 
the occurrence of larger large primes more likely. This suggests an alternative 
definition for Pq, namely, 

1 /q& 

EqEQ ll/q 

for some positive a < 1, the value of which should be tried empirically. We 
found that for numbers in our range of interest a E [2/3, 3/4] resulted in a 
reasonable fit. 

This apparent difficulty to predict the yield in a reliable way is not a serious 
issue for the large prime variation, because the matchings can easily be counted 
and found, as remarked in ? 1, which makes it straightforward to monitor the 
progress of the relation-collection step. See [13] for an alternative analysis of 
the expected number of matches in the large prime variation. 

The progress of a multiple polynomial quadratic sieve factorization, using 
the large prime variation, typically behaves as illustrated in Figure 1. Both the 
number of ordinary full relations and the number of partial relations behave 
approximately as linear functions of the time spent, which implies that the 
number of ordinary full relations behaves approximately as a linear function of 
the number of partial relations, as shown in the figure. The number of matching 
pairs among the partial relations and the total number of full relations, however, 
follow the convex curves. These data were derived from the factorization of a 
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1 00-digit factor of 1 1 104 + 1 for which #P was set to approximately 50,000 and 
108 was used as upper bound for the large primes in the partial relations. With 
the set-up as described in [10] it took us slightly more than 24 days to collect 
300,000 partial relations, at which point we had 20,500 ordinary full relations 
and 29,500 matching pairs of partial relations (cf. [10]). 

We have not attempted to carry out a theoretical analysis of the estimated 
yield of the double large prime variation. From our experience we know, how- 
ever, that such an analysis cannot be expected to have much practical value: 
various times we have factored numbers of approximately the same size, with 
identical parameter settings, for which the same number of fundamental cycles 
required entirely different numbers of partial and partial-partial relations. Fur- 
thermore, the standard deviation of the yield is already quite large if only a 
single large prime is used; apparently the situation is even worse for the double 
large prime variation. For all numbers we factored, using the double large prime 
variation, however, we found a behavior similar to the second figure, though 
the combination curves might lie considerably higher or lower. Thus, once the 
counting algorithm has been used a few times to find the initial part of the com- 
bination curves for a particular number, its completion time can be predicted 
fairly accurately. As a rule of thumb: as soon as the number of fundamental 
cycles equals the number of ordinary full relations, the relation-collection step 
is half completed. 

The data in Figure 2 were derived from the factorization of a 107-digit factor 
of 2401 - 2201 + 1 for which #P was set to 65,500 and 108 was again used as 
upper bound for. the large primes in the partial and partial-partial relations. It 
took us approximately 50 days to collect 165,000 partial and 760,000 partial- 
partial relations, at which point we had approximately 11,000 ordinary full 
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relations and 54,500 fundamental cycles. As shown in the figure, the partial 
relations among themselves gave rise to only 9,000 useful combinations. It 
might be interesting to note that the partial-partial relations among themselves 
gave rise to only two cycles. 

Crossover between single and double large prime variation. As far as we are 
aware, it is always better to use the single large prime variation than it is not 
to use large primes at all. This follows from the way full relations are found 
during the sieving step: if for a candidate v the least absolute residue of v2 
modulo n fails to factor completely after trial division with the primes < B, 
but the unfactored part m is < B2, then a partial relation has been found at 
no extra cost. Usually a small extra cost will be involved in practice, because 
the report bound during the sieving step will be set to a slightly lower value to 
catch more partial relations. 

The situation is more complicated in the double large prime variation of 
the quadratic sieve. If the unfactored part m is > B2 and < B3, this either 
implies a partial-partial relation or a false report: a pp if m happens to be 
composite, and a false report otherwise. In the case that m is composite and 
factors as q1 * q2 with B < q1 < q2 < B2, it still remains to determine the qi. 
Depending on the size of B, this can be done using Pollard's rho method (as 
we did), Shanks's "squfof', or the elliptic curve method [6]. Because it may be 
expected that there are far more pp's than partial relations, these factorizations 
and the compositeness tests to detect the false reports cause a noticeably slower 
performance of the relation-collection step. As a consequence, the double large 
prime variation of the quadratic sieve tends to get less efficient than the single 
large prime variation for relatively small n. Where the crossover point lies 
depends on many fine points, of which we mention a few. 
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For instance, it is advisable to impose a much lower upper bound than B2 for 
q2 and to use a relatively high report bound. We found that it also helps to use a 
much lower upper bound for q, than for q2: it makes relation-collection faster, 
and it cuts down considerably on the number of pp's without affecting the yield 
in the combination step by much because pp's with both large primes close to 
the same large upper bound have a relatively small probability of being useful. 
Good values for the various parameters in this process are best determined 
empirically. We found that for our implementation the double large prime 
variation was already more efficient than the single large prime variation for n 
having approximately 75 digits. For n having more than 90 digits we achieved 
a speed-up over the single large prime variation by a factor of approximately 
2.5. 

As noted by a referee, the speed-up factor is also a function of the size of the 
factor base that is used. The large prime variations serve to extend the factor 
base to primes which occur rarely in factorizations. It is more efficient to dis- 
cover them by removing all the small primes first and examining the quotient, 
than to look for them in a more systematic way using a sieve. Owing to the re- 
stricted form of large-prime relations, we can efficiently determine when enough 
relations are available, and how to eliminate the large primes. Consequently, 
it can be argued that a relatively small factor base results in a larger speed-up 
factor. Notice also that, according to (3.2), for a larger B more partial relations 
are needed to get the same expected number of matches. Because we tend to 
favor small factor base sizes (see below), the speed-up factor of approximately 
2.5 that we found may represent the high end of the spectrum. 

For the large prime variation of the number field sieve, the problems with 
compositeness testing, etc. do not occur. There the sieve consists of two separate 
sieves, and the single large prime variation is applied to each of the two numbers 
to be trial-divided. Consequently, we never experienced any loss of efficiency 
while using the large prime variation of the number field sieve. If double large 
primes are allowed in either of the two numbers that are trial-divided, then the 
problems mentioned above return. For small numbers the first author found this 
last variation of the number field sieve quite slow and not competitive with the 
"normal" version; it might be the case that this variant becomes more practical 
for larger n . 

Choosing the factor base size. For all variations of the quadratic sieve algo- 
rithm the bound B behaves asymptotically as Ln[1/2, 1/2], with Ln as in 
(1.3). Notice that, because of the o(l) in (1.3), the same asymptotic behav- 
ior Ln[1/2, 1/2] follows for the factor base size #P B/(2lnB); it should 
be clear that the optimal value for #P usually does not follow by evaluating 
Ln[1/2, 1/2] with o(l) simply set to zero. A reasonable indication of the 
growth rate of #P, within a limited range of n 's, can however be obtained by 
considering the quotient Lh[1/2, 1/2]/Ln[I/2, 1/2], where both o( I ) 's are set 
to zero. Thus, factor base sizes can fairly reliably be chosen for h, once opti- 
mal choices have been made for n 's of various different sizes. These choices 
will depend on the algorithm, the actual implementation, and various parameter 
settings. Entirely different considerations may also play a role: we have often 
used suboptimal factor base sizes in order to keep program sizes acceptable to 
our many contributors, to cut down on the sizes of the resulting data files, and 
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in an attempt to avoid overloading the mail-handlers at DEC SRC. For actual 
examples, see below. 

Factorizations. All factorizations reported here were obtained using the set-up 
as described in [10]: volunteers run our sieving program on their machines and 
communicate with us using electronic mail. Computing times are given in mips- 
years, where one mips-year is about 3.15 a1013 instructions. Most numbers we 
factored came from the list of unfactored numbers from [2] and are reported 
in [20]. 

The largest number we factored with the single large prime variation of the 
multiple polynomial quadratic sieve was a 106-digit factor of 2353 + 1. This 
factorization took approximately 140 mips-years, and we used #P = 65,500. 
As reported above, we used the same #P for the factorization of a 107-digit 
factor of 2401 - 2201 + 1 , which was our first factorization using the double large 
prime variation of the multiple polynomial quadratic sieve. This factorization 
look less than 60 mips-years. 

Since that time, we factored several numbers in the 110+ digit range, the 
largest one a 16-digit factor of 10142 + 1 for which we used #P = 120,000. 
In principle, a larger value like 160,000 would have been better, but there were 
several reasons why we preferred the suboptimal smaller choice. In addition to 
the reasons mentioned above, we also had to be careful about the size of the 
matrix in the Gaussian elimination step; more about this later. After approxi- 
mately 400 mips-years, we gathered 25,361 ordinary full relations and a total of 
284,750 partial and 953,242 partial-partial relations (with 108 as upper bound 
for the large primes), which gave rise to 117,420 fundamental cycles; the graph 
G (cf. ?2) had e = 1,237,992, v = 1,286,057, and c = 165,485. The number 
of cycles of each length is given in Table 1. There were no cycles that did not 
involve partial relations, and 352,872 of the 1,237,992 relations were used to 
build the set of fundamental cycles. 

Finding subsets W that lead to solutions of (1.1) is equivalent to find- 
ing dependencies modulo 2 among the rows of the matrix consisting of the 
25,361 + 117,420 = 142,781 exponent vectors that correspond to the relations. 
To find these dependencies, we first applied structured Gaussian elimination 
[4,16], which reduced the sparse 142,781 x 120,000 bit-matrix to a dense bit- 
matrix consisting of 44,971 rows and 44,721 columns. So, we kept only 250 

TABLE 1 

cycle number cycle number 
length of cycles length of cycles 

2 22556 11 544 
3 25394 12 233 
4 22536 13 129 
5 18402 14 48 
6 12417 15 17 
7 7747 16 5 
8 4175 17 5 
9 2150 18 1 

10 1059 19 1 
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of the 142,781 - 120,000 > 20,000 excess full relations. We then used a mas- 
sively parallel Gaussian elimination program to find the dependencies in the 
dense matrix, which could easily be transformed into dependencies among the 
rows of the original large sparse matrix, and to solutions of (1.1). The resulting 
factorization, which is at the time of writing still the record general-purpose 
factorization, is: 

10142 + 1 = 101 569 . 7669. 380623 849488 714809 
* 7716926 518833 508778 689508 504941 
*93611 382287 513950 329431 625811 490669 
* 82 519882 659061 966708 762483 486719 
446639 288430 446081. 

The number we factored was the product of the last three factors. 
The elimination of the dense matrix was carried out on a 16K MasPar mas- 

sively parallel computer and took less than half an hour. Because the entire 
dense matrix had to fit in core for our program, and because the MasPar had, at 
that time, only 1/4 GigaByte of memory, we could not have processed a much 
larger dense matrix. Structured Gaussian elimination on our type of matrices 
typically reduces the dimension by a factor between 2.5 and 3, so we expected 
that our choice #P = 120,000 would lead to a dense matrix that we would be 
able to process. This indeed turned out to be the case, but only after we had 
generated more than 20,000 excess full relations. 

Shortly after this computation, the MasPar got upgraded to a core size of 
one GigaByte, which makes it possible to process dense bit matrices of up to 
approximately 90,000 rows and columns in about two hours. This corresponds 
to sparse matrices consisting of approximately 250,000 rows and columns. For 
a description of the massively parallel Gaussian elimination see [5]. 

For factorizations obtained with the double large prime variation of the num- 
ber field sieve, we refer to [1, 8, and 9]. 
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